small Heat shock proteins produced by Pseudomonas Aeruginosa clonal Variants Isolated from Diverse niches
نویسنده
چکیده
Genomic islands interspersed in the chromosome of P. aeruginosa led to interand intraclonal diversity. Recently, a particular clone of P. aeruginosa called clone C was isolated from cystic fibrosis (CF) patients, clinical and non-clinical habitats throughout Europe and in Canada. P. aeruginosa clone C strains harbour up to several hundred acquired genes involved in the adaptation of bacteria to diverse niches. Two genes (hp25 and hp18) from one of the hypervariable regions in the chromosome of clone C strains were highly expressed under standard culture conditions as well as under conditions that mimicked CF sputum environment. Protein sequence analysis revealed that Hp25 and Hp18 belonged to small heat shock protein (sHSP) family. Hp25 protein possessed α-crystallin domain, which is a conserved region among heat shock proteins involved in diverse functions. Sequence homology search revealed that in the Methylobacillus flagellatus genome both genes were situated close to each other and the hp25 gene is found among a few other members of Proteobacteria. Expression of hp25 and hp18 by interand intraclonal strains of P. aeruginosa suggested that both genes were present in the stable part of the hypervariable region at the toxR locus and might play a role in their adaptation to diverse niches including the CF lung environment.
منابع مشابه
A novel protein quality control mechanism contributes to heat shock resistance of worldwide-distributed Pseudomonas aeruginosa clone C strains.
Pseudomonas aeruginosa is a highly successful nosocomial pathogen capable of causing a wide variety of infections with clone C strains most prevalent worldwide. In this study, we initially characterize a molecular mechanism of survival unique to clone C strains. We identified a P. aeruginosa clone C-specific genomic island (PACGI-1) that contains the highly expressed small heat shock protein sH...
متن کاملHeat shock response of Pseudomonas aeruginosa.
The general properties of the heat shock response in Pseudomonas aeruginosa were characterized. The transfer of cells from 30 to 45 degrees C repressed the synthesis of many cellular proteins and led to the enhanced production of 17 proteins. With antibodies raised against the Escherichia coli proteins, two polypeptides of P. aeruginosa with apparent molecular weights of 76,000 and 61,000 (76K ...
متن کاملPrevalence of β-lactamase genes, class 1 integrons, major virulence factors and clonal relationships of multidrug-resistant Pseudomonas aeruginosa isolated from hospitalized patients in southeast of Iran
Objective(s): Pseudomonas aeruginosa is one of the most important nosocomial pathogens causing a high rate of mortality among hospitalized patients. Herein, we report the prevalence of antibiotic resistance genes, class 1 integrons, major virulence genes and clonal relationship among multidrug- resistant (MDR) P. aeruginosa, isolated from four referral hospitals in the...
متن کاملBiochemical and computational study of an alginate lyase produced by Pseudomonas aeruginosa strain S21
Objective(s): Alginates play a key role in mucoid Pseudomonas aeruginosa colonization, biofilm formation, and driving out of cationic antibiotics. P. aeruginosa alginate lyase (AlgL) is a periplasmic enzyme that is necessary for alginate synthesis and secretion. It also has a role in depolymerization of alginates. Using AlgLs in cystic fibrosis patients along with anti...
متن کاملIn vivo Host Environment Alters Pseudomonas aeruginosa Susceptibility to Aminoglycoside Antibiotics
During host infection, Pseudomonas aeruginosa coordinately regulates the expression of numerous genes to adapt to the host environment while counteracting host clearance mechanisms. As infected patients take antibiotics, the invading bacteria encounter antibiotics in the host milieu. P. aeruginosa is highly resistant to antibiotics due to multiple chromosomally encoded resistant determinants. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009